mRNA-3927 Therapy for Propionic Acidemia: Interim Data From a Phase 1/2 Study

Stephanie Grunewald,1 Saikat Santra,2 Dwight Koeberl,3 Andreas Schulze,4 Neal Sondheimer,4 Ayesha Ahmad,5 Gerald Lipshutz,6 Tarekegn Geber Hiwot,7 Min Liang,8 Lerong Li,8 Ruchira Glaser,8,* Nuria Carrillo,8 on behalf of the Paramount Trial Investigators

1Great Ormond Street Hospital for Children and Institute for Child Health, NIHR Biomedical Research Center, London, UK; 2Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK; 3Duke University Medical Center, Durham, NC, USA; 4Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; 5Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA; 6University of California at Los Angeles (UCLA), Los Angeles, CA, USA; 7University of Birmingham, Birmingham, UK; 8Moderna, Inc., Cambridge, MA, USA

*Affiliation at the time of the abstract submission

Presented at the American Society of Gene & Cell Therapy (ASGCT) 26th Annual Meeting
May 16-20, 2023
Los Angeles, CA
Disclosures, Acknowledgments, and Abstract Plain Language Summary

• Presenting author: GL: Research grants from Moderna, Inc.

• Co-authors: SG: Investigator, consultant, advisory board member and recipient of travel reimbursements for for Moderna, Inc., and consulting for BridgeBio, Glycomine, Jaguar, Orphazyme, and Ultragenyx. SS: Investigator and advisory board member for Moderna, Inc. DK: Consultant for Amicus, Genzyme Sanofi, Sangamo Therapeutics, and Vertex; grant support recipient from Amicus, Genzyme Sanofi, Roivant Rare Diseases, and Viking Therapeutics; equity in Askbio. AS: Investigator and consultant for Moderna, Inc., and consultant and/or advisory board member for Aeglea, Beam, Ceres Brain, Horizon, iEcure, MTPharma, Recordati, Satellite Bio, and Ultragenyx. NS: Investigator and consultant for Moderna, Inc. AA and TGH: Investigators for Moderna, Inc. ML, LL, and NC: Employees of Moderna, Inc. and holder of stock/stock options in the company. RG: Employee of Moderna, Inc., and holder of stock/stock options in the company at the time of the abstract submission; now employed with Novartis.

• Medical writing and editorial assistance were provided by Sarah Feeny, BMedSci, of MEDIATRAVA in accordance with Good Publication Practice (GPP3) guidelines, funded by Moderna, Inc. and under the direction of the authors

• This study was funded by Moderna, Inc.

• Abstract plain language summary
 – Please scan the QR code for a copy of an infographic plain language summary of the submitted abstract
 – Copies of the summary obtained through the QR code are for personal use only and may not be reproduced without written permission of the authors
 – For additional information, please contact Medical Information (medinfo@moderatx.com)
Propionic Acidemia (PA) Is a Rare Inherited Metabolic Disorder

- **Rare “intoxication-type” organic acidemia**
 - Global birth prevalence estimates: 0.29–4.24 per 100,000 newborns

- **Caused by pathogenic variants in PCCA or PCCB genes:**
 - Deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC), an heterododecamer made up of alpha (PCCA) and beta (PCCB) subunits

- **Accumulation of toxic metabolites,** including 2-methylcitrate (2-MC), and 3-hydroxypropionate (3-HP)

Clinical Characteristics and Management of PA

- Primarily a pediatric disease, with onset typically in neonates resulting in significant morbidity and mortality\(^1,2\)

- Characterized by recurrent, life-threatening metabolic decompensation events\(^1-3\)
 - Long-term cognitive outcome is negatively correlated to the number of metabolic decompensation events\(^4\)

- Multisystemic complications include neurological manifestations, cardiomyopathy, arrhythmias, growth retardation, recurrent pancreatitis, bone marrow suppression, and predisposition to infection\(^1,2,5\)

- No approved therapies address the underlying defect in PA
 - Current management includes dietary protein restriction to reduce propiogenic precursors\(^3\)
 - Liver transplant improves biochemical and clinical outcomes; transplant is not curative

© 2023 Moderna, Inc. Confidential. All rights reserved.
An Introduction to mRNA-3927

- mRNA-3927 is a novel, IV-administered, lipid nanoparticle (LNP)-encapsulated dual mRNA therapy that encodes for PCCA and PCCB subunit proteins to restore functional PCC enzyme activity in the liver.

- By encoding for intracellular proteins, mRNA therapy has a potential role in preventing and treating acute metabolic decompensations.

IV, intravenous.
mRNA-3927 Phase 1/2 Trial Overview

- PARAMOUNT: A global, phase 1/2, open-label, dose optimization study to evaluate the safety, pharmacodynamics, and pharmacokinetics of mRNA-3927 in participants with PA (NCT04159103; mRNA-3927-P101)

- Participants receive up to 10 doses of mRNA-3927, then may enter a 2-year safety follow-up period, or continue to receive mRNA-3927 in an extension study (NCT05130437)

- Primary endpoints:
 - Incidence and severity of AEs, SAEs, and AEs leading to discontinuation

- Secondary endpoints:
 - Include changes in plasma biomarkers and PK of mRNA-3927

- Exploratory clinical endpoints:
 - Include metabolic decompensation events

\(^a\)Dose-limiting toxicities (DLTs) were defined as TEAEs that occurred during the first 14 days following administration of the first dose of mRNA-3927, and were grade ≥3 regarded as possibly or probably related to mRNA-3927.
\(^b\)The first 2 patients were to be ≥8 years of age.
\(^c\)In the dose expansion stage, a minimum of 2 patients with each PA subtype (PCCA or PCCB variant) will be enrolled.

AE, adverse event; DLT, dose-limiting toxicity; PD, pharmacodynamics; PK, pharmacokinetics; SAE, serious adverse event.
Inclusion/Exclusion Criteria for the mRNA-3729-P101 Phase 1/2 Study

Key Inclusion Criteria

- ≥1 year of age at the time of consent/assent
- Confirmed diagnosis of PA based on diagnosis by molecular genetic testing (biallelic PCCA and/or PCCB variants)
- Patient and/or legally authorized representative is willing and able to provide informed consent and/or assent as mandated by local regulations and willing and able to comply with study-related assessments
- Sexually active females of childbearing potential and sexually active males of reproductive potential agree to use a highly effective method of contraception during study treatment and for 3 months following the last administration of study drug

Key Exclusion Criteria

- Laboratory abnormalities achieving exclusionary thresholds
- eGFR <30 mL/min/1.73 m², or chronic dialysis
- QTc >480 msec using Bazett’s correction
- Positive pregnancy test/pregnant or breastfeeding
- Grade 3 or 4 heart failure
- History or planned organ transplant
- Hypersensitivity or contraindication to premedications
- History of hypersensitivity to components of the drug
- Another investigational agent within 30 days or within 5 elimination half-lives
- Major surgical procedure within 30 days (excludes line, port, or feeding tube)
- Enrollment not deemed to be of clinical benefit, in the opinion of the PI
- Other condition that could interfere with interpretation of study results or limit the participation in the study, in the opinion of the PI
- COVID-19 vaccination within 6 weeks between last dose and first study drug administration

eGFR, estimated glomerular filtration rate; PA, propionic acidemia; PI, principal investigator; QTc, corrected QT interval.
Patient Disposition (as of March 31, 2023)

- 16 patients dosed with mRNA-3927
 - 2 patients discontinued mRNA-3927-P101
 (1 withdrawal by patient; 1 following AEs)

- All 11 patients completing mRNA-3927-P101 have continued in the extension study

- In mRNA-3927-P101 and the extension:
 - >280 intravenous doses of mRNA-3927 administered
 - >13 patient-years’ experience with mRNA-3927
 - 5 patients with >1 year of dosing

- Results are presented for mRNA-3927-P101 and the extension study

Cohort 1 (0.3 mg/kg IV q3w)
- n=4
- Fully enrolled

Cohort 2 (0.3 mg/kg IV q2w)
- n=3

Cohort 3 (0.45 mg/kg IV q2w)
- n=3

Cohort 4 (0.6 mg/kg IV q2w)
- n=3

Cohort 5 (0.9 mg/kg IV q2w)
- n=3

Cohort 6 (TBD)
- n=3-6

Identification of optimal dose triggers
dose expansion

Safety monitoring committee meets at the end of each cohort

© 2023 Moderna, Inc. Confidential. All rights reserved.
Patient Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th>Cohort</th>
<th>0.3 mg/kg q3w (n=4)</th>
<th>0.3 mg/kg q2w (n=3)</th>
<th>0.45 mg/kg q2w (n=3)</th>
<th>0.6 mg/kg q2w (n=3)</th>
<th>0.9 mg/kg q2w (n=3)</th>
<th>All (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at enrollment, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>15.4 (5.2-26.8)</td>
<td>2.3 (1.5-8.3)</td>
<td>3.8 (1.6-15.3)</td>
<td>8.8 (1.3-21.4)</td>
<td>15.1 (1.4-17.8)</td>
<td>8.5 (1.3-26.8)</td>
</tr>
<tr>
<td>Age at disease onset, months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>0.0 (0-1)</td>
<td>0.0 (0-0)</td>
<td>0.0 (0-1)</td>
<td>1.5 (0-3)</td>
<td>0.0 (0-0)</td>
<td>0.0 (0-3)</td>
</tr>
<tr>
<td>Sex, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male:female</td>
<td>2:2</td>
<td>0:3</td>
<td>2:1</td>
<td>2:1</td>
<td>2:1</td>
<td>8:8</td>
</tr>
<tr>
<td>Race, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Black or African American</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>White</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Ethnicity, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight at baseline, kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>44.4 (21.6-66.5)</td>
<td>15.8 (10.6-24.8)</td>
<td>18.0 (11.2-42.7)</td>
<td>24.9 (11.9-62.7)</td>
<td>39.3 (11.7-88.1)</td>
<td>24.7 (10.6-88.1)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCA:PCCB</td>
<td>2:2</td>
<td>1:2</td>
<td>2:1</td>
<td>2:1</td>
<td>1:2</td>
<td>8:8</td>
</tr>
</tbody>
</table>

Note: Data missing for 1 patient.
Most Common Treatment-Emergent Adverse Events [n (%)]

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 0.3 mg/kg q3w</th>
<th>Cohort 2 0.3 mg/kg q2w</th>
<th>Cohort 3 0.45 mg/kg q2w</th>
<th>Cohort 4 0.6 mg/kg q2w</th>
<th>Cohort 5 0.9 mg/kg q2w</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients initially assigned, n</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Patients receiving at least 1 dose, n</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Total number of doses, n</td>
<td>71</td>
<td>118</td>
<td>56</td>
<td>27</td>
<td>16</td>
<td>288</td>
</tr>
<tr>
<td>Treatment exposure, person-years</td>
<td>4.3</td>
<td>4.8</td>
<td>2.2</td>
<td>1.2</td>
<td>0.6</td>
<td>13.6</td>
</tr>
</tbody>
</table>

TEAEs

<table>
<thead>
<tr>
<th>Event</th>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
<th>Cohort 4</th>
<th>Cohort 5</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrexia</td>
<td>3 (75.0)</td>
<td>3 (60.0)</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td>1 (33.3)</td>
<td>10 (62.5)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2 (50.0)</td>
<td>4 (80.0)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 (25.0)</td>
<td>4 (80.0)</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td>0</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>Cough</td>
<td>1 (25.0)</td>
<td>3 (60.0)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>5 (31.3)</td>
</tr>
<tr>
<td>COVID-19</td>
<td>1 (25.0)</td>
<td>3 (60.0)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>5 (31.3)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>1 (25.0)</td>
<td>2 (40.0)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>5 (31.3)</td>
</tr>
<tr>
<td>Diaper dermatitis</td>
<td>1 (25.0)</td>
<td>2 (40.0)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>4 (25.0)</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>0</td>
<td>3 (60.0)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>4 (25.0)</td>
</tr>
<tr>
<td>Ear pain</td>
<td>1 (25.0)</td>
<td>2 (40.0)</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>1 (25.0)</td>
<td>0</td>
<td>0</td>
<td>2 (66.7)</td>
<td>0</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Increased creatinine phosphokinase</td>
<td>2 (50.0)</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Increased lipase</td>
<td>0</td>
<td>1 (20.0)</td>
<td>0</td>
<td>0</td>
<td>2 (66.7)</td>
<td>3 (18.8)</td>
</tr>
<tr>
<td>Metabolic disorder</td>
<td>2 (50.0)</td>
<td>1 (20.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (18.8)</td>
</tr>
</tbody>
</table>

Includes both mRNA-3927-101 and extension studies.

*Patients may change dosing regimens and will be counted and summarized in each regimen if they received at least 1 dose in the regimen. **TEAEs are defined as AEs reported on or after the date that the intervention began. q2w, every 2 weeks; q3w, every 3 weeks; TEAE, treatment-emergent adverse event.
Safety Summary

- No dose-limiting toxicities occurred
- TEAEs\(^a\) were reported in 15/16 patients and drug-related TEAEs were reported in 9/16 patients
- SAEs\(^b\) were reported in 8/16 patients
 - There were 2/16 patients who reported a total of 3 drug-related SAEs:
 - Grade 3 pancreatitis in 1 patient
 - Vascular device infection and injection-site reaction (both grade 2) consistent with infusion site reactions in 1 patient
 - Overall, of 54 reported SAEs, 31 were considered related to PA
- Infusion-related reactions\(^c\) (IRRs) occurred in 6/16 patients and in 19/288 doses (6.6%)
 - 1 patient had IRR in 11 out of 39 doses received
 - 3/6 patients had IRRs in 2 doses and 2/6 patients had IRRs in 1 dose
 - All IRRs were grade 1 or 2
- Three hypersensitivity reactions occurred in 1 patient
 - Grade 1-2 rash with dose 1; grade 1 rash with dose 2; no reactions thereafter

\(^a\)TEAEs are defined as AEs reported on or after the date that the intervention began. \(^b\)An AE is considered an SAE if, in the view of the Investigator or Sponsor, it results in any of the following outcomes: death, is life-threatening, requires hospitalization or prolongation of existing hospitalization, persistent disability/incapacity, a congenital anomaly/birth defect, or is judged as medically important. \(^c\)Infusion-related reactions (IRRs) are defined as a drug-related AE occurring within 24 hours of the start of a dose.

AE: adverse event; IRR: infusion-related reaction; PA: propionic acidemia; SAE: serious adverse event; TEAE: treatment-emergent adverse event.
Summary of Metabolic Decompensations Events (MDEs)

Prior to mRNA-3927 treatment

Exposure duration of 8.4 years in patients with ≥1 retrospective MDE

- 66% overall relative risk reduction in MDE frequency
- 78% relative risk reduction in q2w dosing cohorts
- No MDEs in 0.6 mg/kg cohort

Cohort 1 (mRNA-3927 0.3 mg/kg q3w) n=4
Cohort 2 (mRNA-3927 0.3 mg/kg q2w) n=3
Cohort 3 (mRNA-3927 0.45 mg/kg q2w) n=3
Cohort 4 (mRNA-3927 0.6 mg/kg q2w) n=3
Cohort 5 (mRNA-3927 0.9 mg/kg q2w) n=3

Includes mRNA-3927-P101 and extension studies.

The generalized linear mixed models for MDE number and duration includes period, dosing frequency, and period-by-dosing frequency as independent variables, duration of observation as an offset and a random effect to consider the repeated measurements within a patient.

q2w, every 2 weeks; q3w, every 3 weeks; MDE, metabolic decompensation event.

© 2023 Moderna, Inc. Confidential. All rights reserved.
Conclusions

• This is the first clinical trial reporting results of an mRNA therapeutic for intracellular protein replacement

• 16 patients dosed
 – >280 intravenous doses of mRNA-3927
 – 5 patients received >1 year of dosing
 – More than 13 patient-years’ experience on drug
 – All eligible participants continue to opt-in to the open-label expansion

• To date, mRNA-3927 has been well-tolerated in patients with PA at the doses administered, with no dose-limiting toxicities

• Results show encouraging early signs of potential clinical benefit with mRNA-3927
 – Reductions in the number of metabolic decompensation events were observed after the start of mRNA-3927 treatment in patients who reported them in the 12 months prior to dosing

• The study is ongoing
 – Next steps include confirming the optimal therapeutic dose and evaluating it in additional patients, including infants
Thank you