

Efficacy and Safety of Maralixibat in Patients with Progressive Familial Intrahepatic Cholestasis (MARCH-PFIC): A Randomized Placebo-Controlled Phase 3 Study

Alexander Miethke¹, Adib Moukarzel², Gilda Porta³, Joshue Covarrubias Esquer⁴, Piotr Czubkowski⁵, Felipe Ordonez⁶, Manila Candusso⁷, Amal A Aqul⁸, Robert H Squires⁹, Etienne Sokal¹⁰, Daniel D'Agostino¹¹, Ulrich Baumann¹², Lorenzo D'Antiga¹³, Nagraj Kasi¹⁴, Nolwenn Laborde¹⁵, Cigdem Arikan¹⁶, Chuan-Hao Lin¹⁷, Susan Gilmour¹⁸, Naveen Mittal¹⁹, Fang Kuan Chiou²⁰, Simon P Horslen⁹, Wolf-Dietrich Huber²¹, Arthur Van Leerberghe²², Susanne Weber Rønn²², Tiago Nunes²², Anamaria Lascau²², Lara Longpre²², Will Garner²², Pamela Vig²², Vera F Hupertz²³, Regino P Gonzalez-Peralta²⁴, Udeme Ekong²⁵, Jane Hartley²⁶, Noemie Laverdure²⁷, Nadia Ovchinsky²⁸, Richard J Thompson²⁹

¹Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; ²Hotel-Dieu de France, Saint Joseph University Hospital, Beirut, Lebanon; ³Hospital Sirio Libanes, Sao Paulo, Brazil; ⁴Nois de Mexico SA CV, Jalisco, Mexico; ⁵Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland; ⁶Cardioinfantil FoundatiDeon - Lacardio, Bogota, Colombia; ⁷Ospedale Pediatrico Bambino Gesu Irccs, Lazio, Italy; ⁸University of Texas Southwestern Medical Center, Dallas, Texas; ⁹Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; ¹⁰Pediatric, Uclouvian, Cliniques Universitaires St Luc, Brussels, Belgium; ¹¹Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; ¹²Pediatric Gastroenterology and Hepatology, Hannover MediHepatologycal School, Hannover, Germany; ¹³Department of Paediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy; ¹⁴Medical University of South Carolina, Charleston, South Carolina; ¹⁵Hôpital des Enfants – CHU Toulouse, Toulouse, France; ¹⁶Koc University School of Medicine, Istanbul, Turkey; ¹⁷Children's Hospital Los Angeles, California; ¹⁸Pediatrics, University of Alberta, Alberta, Canada; ¹⁹University of Texas Health Science Center at San Antonio, San Antonio, Texas; ²⁰Kk Women's and Children's Hospital, Singapore; ²¹Medical University of Vienna, Aventhealth for Children and AdventHealth Transplant Institute, Orlando, Florida; ²⁵Medistar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington DC; ²⁶Birmingham Women and Children's Hospital, Birmingham, United Kingdom; ²⁷Pediatric Hepato Gastroenterology and Nutrition Unit, Hôpital Femme Mere Enfant, Hospices Civils de Lyon, Lyon, France; ²⁸Children's Hospital at Montefiore, Bronx, New York; ²⁹Institute of Liver Studies, King's College London, London, United Kingdom

Richard J Thompson

- Professor of Molecular Hepatology at King's College London,
 and Honorary Consultant Paediatric Hepatologist at King's College Hospital, London
- Specializes in genetic liver disease in both children and adults
- Through worldwide collaborations, his lab continues to identify new causes of genetic liver disease
- Clinical lead for a diagnostic laboratory specializing in liver and gastrointestinal disease

Disclosures

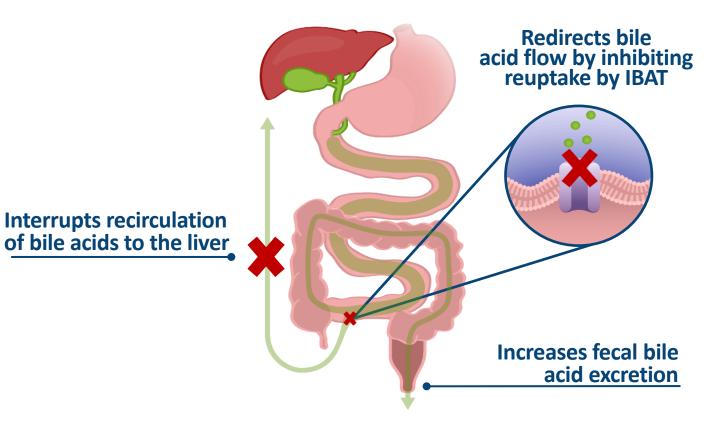
• R J Thompson is a consultant for Mirum Pharmaceuticals, Inc., Albireo, GenerationBio, and Rectify Therapeutics, and is a shareholder in GenerationBio and Rectify Therapeutics

Progressive Familial Intrahepatic Cholestasis (PFIC)

- Genetic disorders resulting in disrupted bile composition and chronic cholestasis¹
- Debilitating pruritus, impaired growth, reduced QoL, and progressive liver disease with most children undergoing liver transplantation^{2–5}
- PFIC types include deficiencies of:¹⁻³
 - Bile salt export pump (BSEP)
 - Familial intrahepatic cholestasis-associated protein 1 (FIC1)
 - Multidrug resistant 3 protein (MDR3)
 - Tight junction protein 2 (TJP2)
 - Myosin VB (MYO5B)
- Current treatments include off-label antipruritic treatments, surgical biliary diversion, liver transplantation, and IBAT inhibitors^{6–7*}

The efficacy of IBAT inhibitors has not been studied across every PFIC type

IBAT, ileal bile acid transporter; PFIC, progressive familial intrahepatic cholestasis; QoL, quality of life.

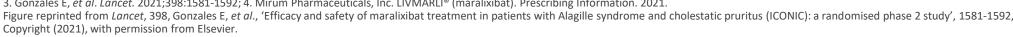

^{*}Odevixibat is an IBAT inhibitor that received FDA approval for the treatment of pruritus in patients 3 months of age and older with PFIC and is approved in the EU for the treatment of PFIC in patients 6 months of age and older.

^{1.} Jacquemin E, et al. Clin Res Hepatol Gastroenterol. 2012;36(Suppl 1):S26-S35; 2. van Wessel D, et al. J Hepatol. 2020;73:84-93; 3. Kamath BM, et al. Liver Int. 2020;40:1812-1822;

^{4.} Kamath BM, et al. Patient. 2018;11:69-82; 5. Loomes MK, et al. Hepatol Commun. 2022;6:2379-2390; 6. Davit-Spraul A, et al. Orphanet J Rare Dis 2009 Jan 8;4:1. doi: 10.1186/1750-1172-4-1;

^{7.} Albireo Pharma, Inc. BYLVAY® (odevixibat). Prescribing Information. 2021.

Maralixibat: IBAT Inhibitor That Interrupts Enterohepatic Circulation

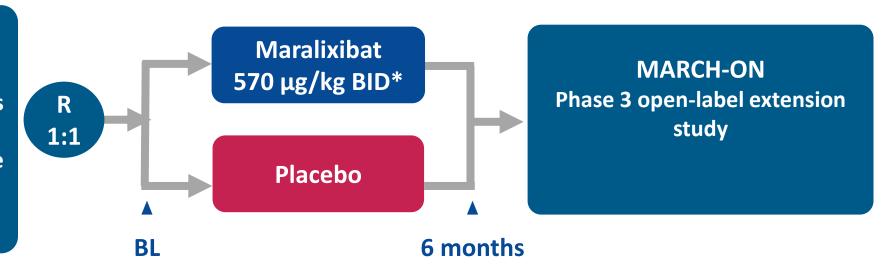

Clinical effects of maralixibat in cholestasis:

- Improvements in pruritus¹⁻³
- Reduction in peripheral sBA¹⁻³
- Five-year transplant-free survival in sBA responders with BSEP deficiency^{1,2}

Maralixibat received FDA approval in 2021 for the treatment of cholestatic pruritus in patients with ALGS 1 year of age and older^{3,4}

BSEP, bile salt export pump; sBA, serum bile acid

^{3.} Gonzales E, et al. Lancet. 2021;398:1581-1592; 4. Mirum Pharmaceuticals, Inc. LIVMARLI® (maralixibat). Prescribing Information. 2021.


^{1.} Thompson R, et al. EASL 2020. (Oral presentation, #LB08); 2. Loomes MK, et al. Hepatol Commun. 2022;6:2379-2390;

MARCH-PFIC: Phase 3 Study Design

Key Entry Criteria

- Diagnosis of PFIC
- Age ≥12 months and <18 years at time of baseline
- Persistent, moderate to severe pruritus
- sBA ≥3× ULN

MARCH-PFIC: Study Populations

Full-Study Population (N = 93) All-PFIC cohort (n = 64)

Exploratory cohort (n = 29)

BSEP cohort: nt-BSEP (n = 31)

FIC1 (n = 13), MDR3 (n = 9), TJP2 (n = 7), and MYO5B (n = 4) (n = 33)

Heterozygosis* (n = 2), truncated-BSEP (n = 9), variants not found (n = 8), fluctuating sBA (n = 2), and surgery (n = 8)

MARCH-PFIC: Efficacy Endpoints

Primary Endpoint (BSEP cohort):

Mean change in morning ItchRO(Obs) severity score between baseline and average of the last 12 weeks

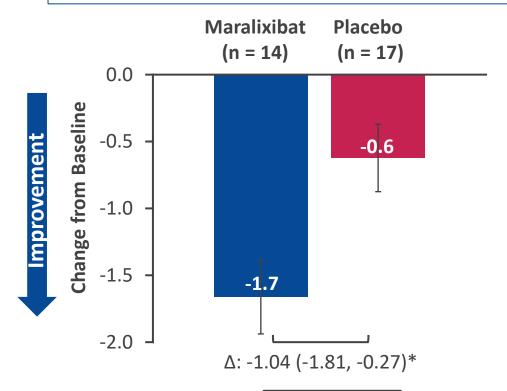
Secondary Endpoints (BSEP and All-PFIC cohorts):

- Mean change in morning ItchRO(Obs) severity score between baseline and average of the last 12 weeks in the All-PFIC cohort
- Mean change in total sBA level between baseline and average of the last 12 weeks in the BSEP and All-PFIC cohorts
- Responder analyses of pruritus and sBA

Exploratory Endpoints (All-PFIC cohorts):

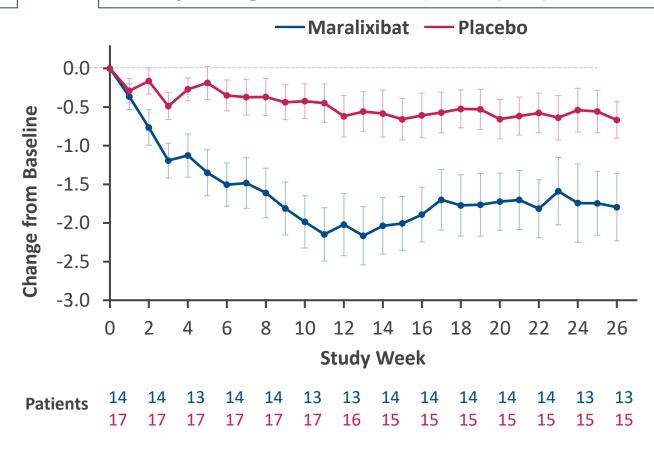
- Mean change from baseline in total and direct bilirubin
- Mean change from baseline in growth (height and weight Z-scores)
- Endpoints were analyzed using a repeated measures model (MMRM) considering data from all study visits
- ItchRO is a 0-4 scale; ≥1 point reduction is clinically meaningful
- The safety endpoints were assessed in the Full-Study population: incidence of AEs

Key Demographics and Baseline Characteristics


	BSEP		All-PFIC		Full-Study	
Variable	Maralixibat (n = 14)	Placebo (n = 17)	Maralixibat (n = 33)	Placebo (n = 31)	Maralixibat (n = 47)	Placebo (n = 46)
Age (years); mean	6.3	4.2	4.9	4.4	4.8	4.7
Sex (male); %	50	35	52	42	43	48
Pruritus (ItchRO[Obs]); mean	2.9	2.6	2.9	2.7	2.8	2.9
Total sBA (μmol/L); mean	312	312	254	272	263	243
UDCA usage (%)	79	100	82	97	83	85
Rifampicin usage (%)	43	53	55	48	55	50
Alanine aminotransferase (U/L); mean	98.4	154.9	87.8	127.3	107.9	121.2
Total bilirubin (mg/dL); mean	3.5	2.7	4.1	4.0	4.1	3.8
Direct bilirubin (mg/dL); mean	2.4	1.9	3.0	2.9	3.0	2.8
Height Z-score; mean	-2.0	-2.2	-2.1	-2.1	-2.0	-1.9
Weight Z-score; mean	-1.5	-1.2	-1.8	-1.3	-1.6	-1.2

Baseline characteristics and demographics were balanced between the cohorts

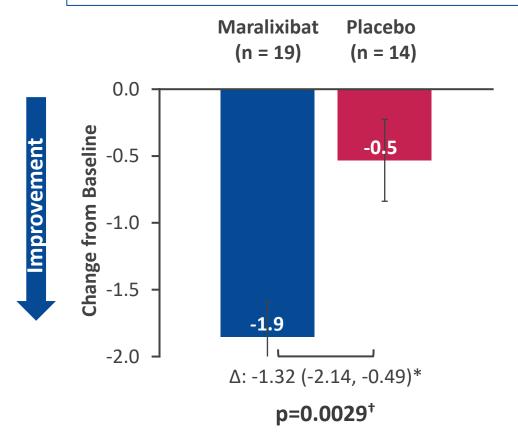
Primary Endpoint: Change in Weekly ItchRO(Obs) Score in BSEP Cohort



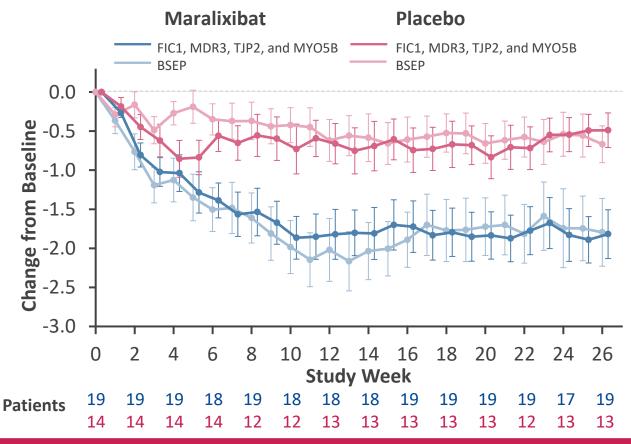
Primary endpoint

p=0.0098[†]

Weekly Average Pruritus Score (ItchRO[Obs]) Over Time

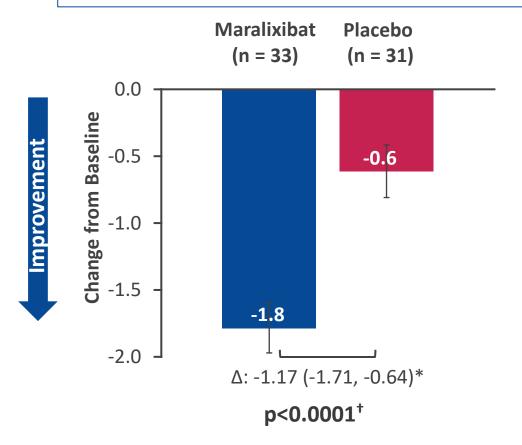


Maralixibat resulted in statistically significant and clinically meaningful improvements in pruritus in the BSEP cohort

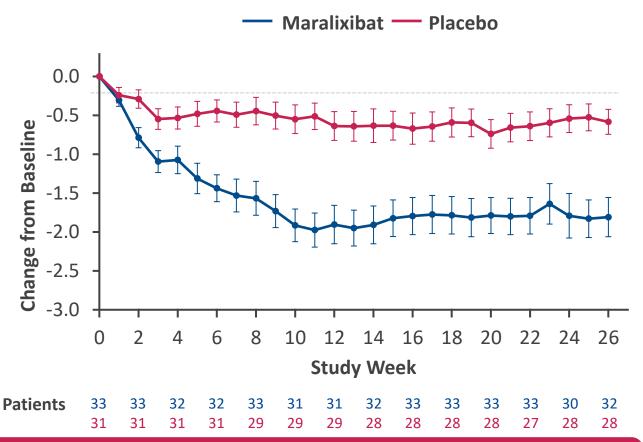


Change in Weekly ItchRO(Obs) Score in FIC1, MDR3, TJP2, and MYO5B

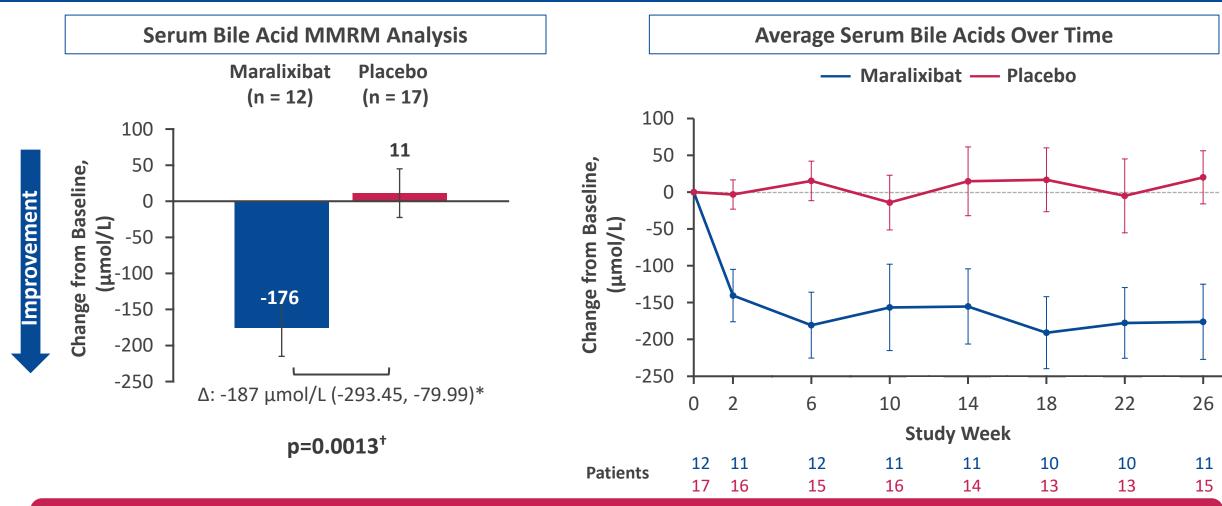
Weekly Average Pruritus Score (ItchRO[Obs]) Over Time


Maralixibat resulted in resulted in statistically significant and clinically meaningful improvements in pruritus in FIC1, MDR3, TJP2, and MYO5B

Data are LS mean (for bar plot) and mean (for line plot) with standard error bars. Effect size compared the difference between maralixibat and placebo, averaged over the last 3 time periods (4-week intervals) using a MMRM. FIC1, familial intrahepatic cholestasis-associated protein 1; ItchRO(Obs), Itch Reported Outcome (Observer); LS, least squares; MMRM, mixed model repeated measures; MDR3, Multi-drug resistant 3 protein; MYO5B, myosin VB; TJP2, tight junction protein 2.

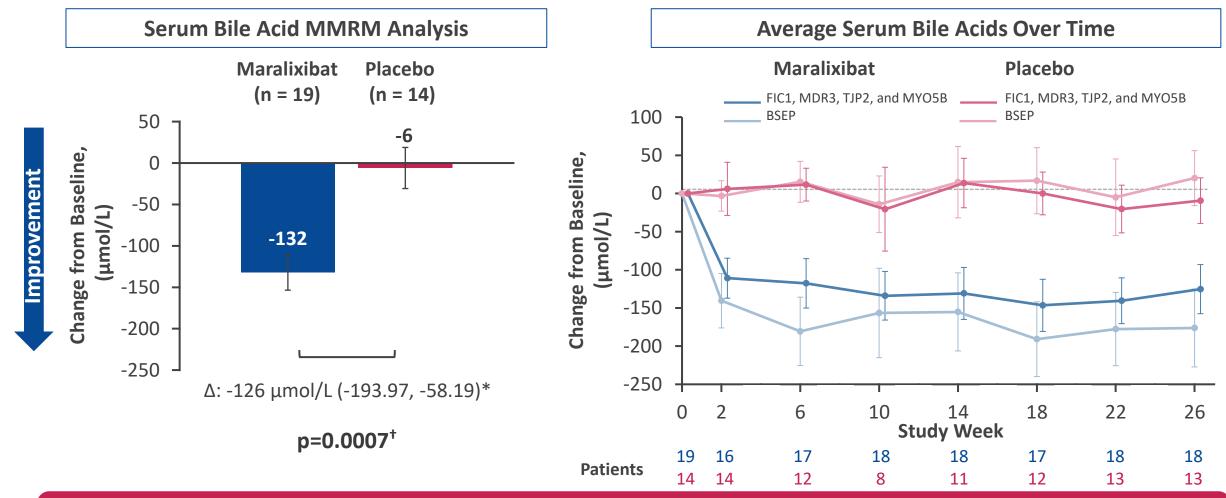


Secondary Endpoint: Change in Weekly ItchRO(Obs) Score in All-PFIC Cohort


Weekly Average Pruritus Score (ItchRO[Obs]) Over Time

Maralixibat resulted in statistically significant and clinically meaningful improvements in pruritus in the All-PFIC cohort

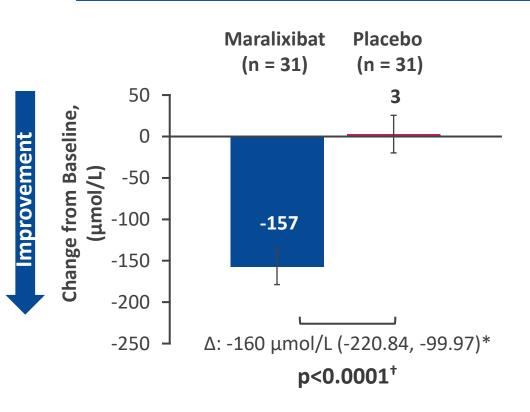
Secondary Endpoint: Change From Baseline in Serum Bile Acids in BSEP Cohort

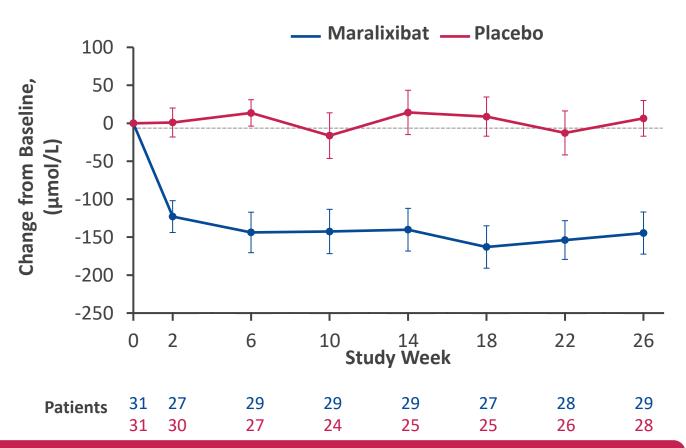


Maralixibat resulted in statistically significant improvements in serum bile acid levels in the BSEP cohort

Change From Baseline in Serum Bile Acid in FIC1, MDR3, TJP2, and MYO5B

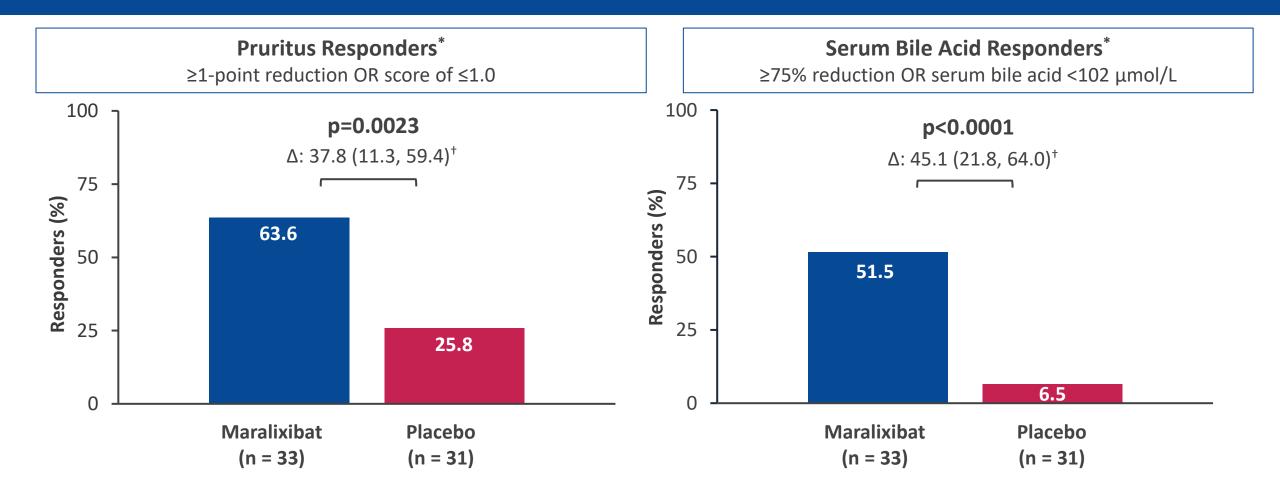
Maralixibat resulted in statistically significant improvements in serum bile acid levels in FIC1, MDR3, TJP2, and MYO5B


Data are LS mean (for bar plot) and mean (for line plot) with standard error bars. Effect size compared the difference between maralixibat and placebo, averaged over the last 3 time periods (weeks 18, 22, and 26) using a MMRM. FIC1, familial intrahepatic cholestasis-associated protein 1; LS, least squares; MMRM, mixed model repeated measures; MDR3, Multi-drug resistant 3 protein; MYO5B, myosin VB; TJP2, tight junction protein 2.



Secondary Endpoint: Change From Baseline in Serum Bile Acid in All-PFIC Cohort

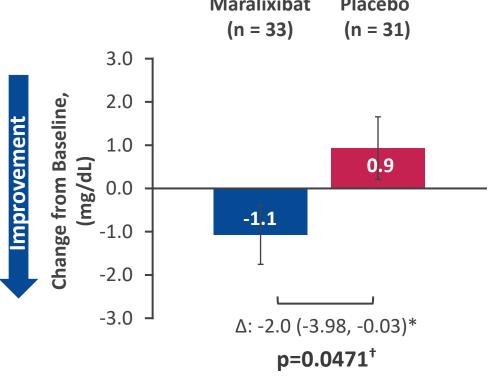
Average Serum Bile Acids Over Time



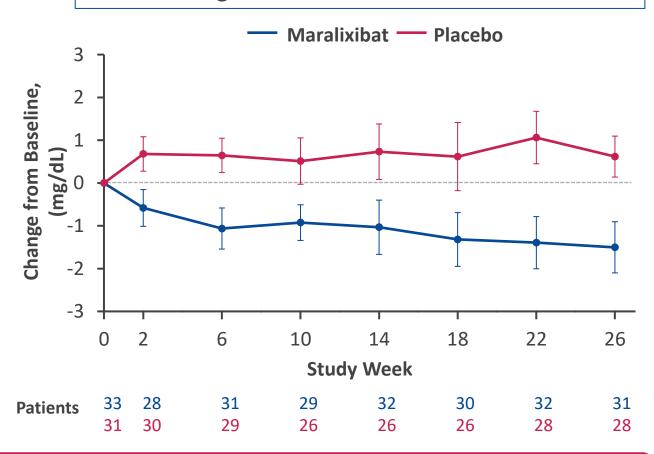
Maralixibat resulted in statistically significant improvements in serum bile acid levels in the All-PFIC cohort

Data are LS mean (for bar plot) and mean (for line plot) with standard error bars. Effect size compared the difference between maralixibat and placebo, averaged over the last 3 time periods (weeks 18, 22, and 26) using a MMRM. Two participants in the maralixibat group did not have baseline sBAs.

Secondary Endpoint: Pruritus and sBA Responder Analyses in All-PFIC Cohort

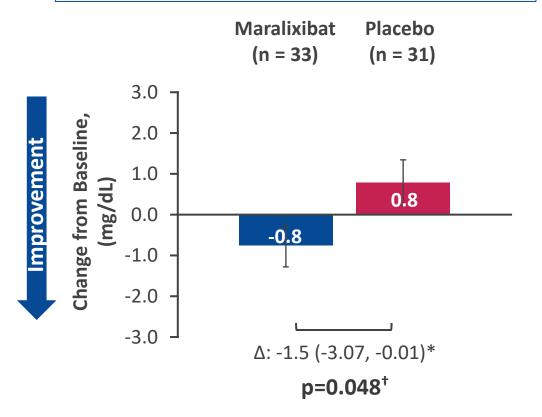


Significantly greater percentage of maralixibat-treated patients met the response thresholds for pruritus and serum bile acid in the All-PFIC cohort

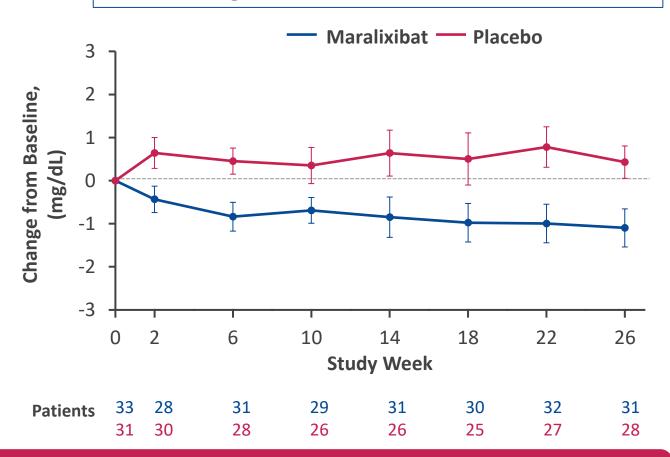


Exploratory Endpoint: Change From Baseline in Total Bilirubin in All-PFIC Cohort

Average Serum Total Bilirubin Over Time

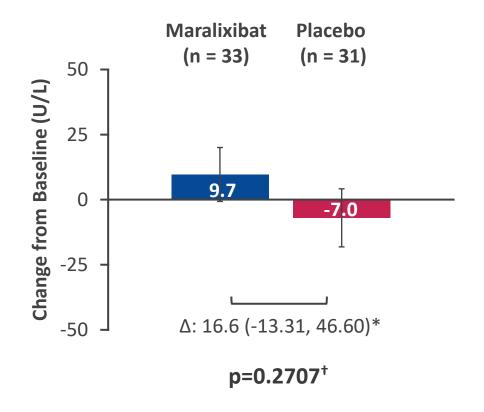


Maralixibat resulted in statistically significant improvements in total bilirubin in the All-PFIC cohort

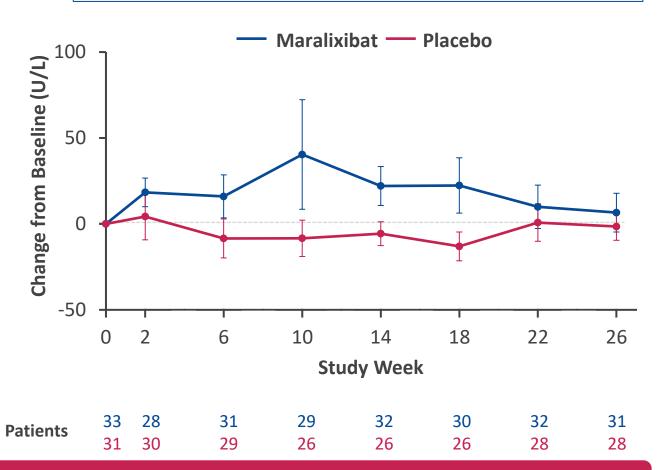


Exploratory Endpoint: Change From Baseline in Direct Bilirubin in All-PFIC Cohort

Average Serum Direct Bilirubin Over Time

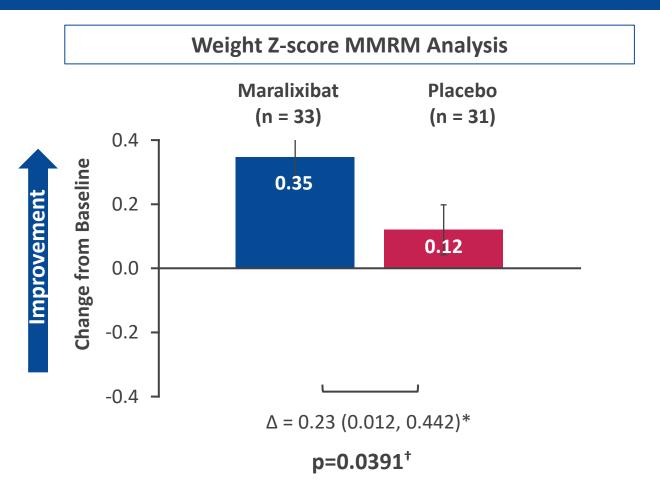


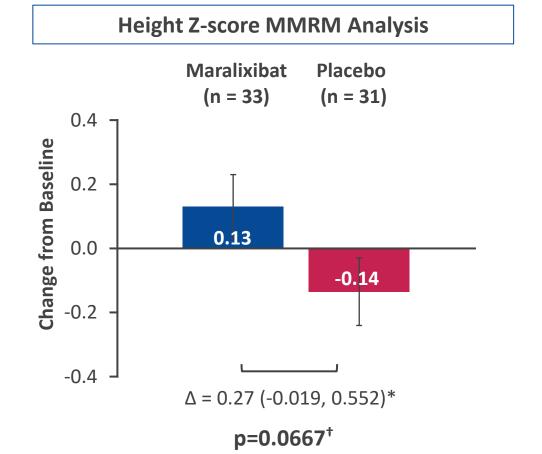
Maralixibat resulted in statistically significant improvements in direct bilirubin in the All-PFIC cohort



Change From Baseline in ALT in All-PFIC Cohort

Serum ALT MMRM Analysis


Average Serum ALT Over Time



No significant changes in ALT levels were observed following maralixibat treatment in the All-PFIC cohort

Exploratory Endpoint: Change From Baseline in Weight and Height Z-Score in All-PFIC Cohort

Maralixibat resulted in statistically significant improvements in weight Z-score and a trend in height Z-score in the All-PFIC cohort

Summary of TEAEs in Full-Study Cohort (N = 93)

TEAE	Maralixibat (n = 47)	Placebo (n = 46)
Any TEAE, n (%)	47 (100%)	43 (93.5%)
Severe TEAE, n (%)	3 (6.4%)	3 (6.5%)
Serious TEAE, n (%)	5 (10.6%)	3 (6.5%)
TEAE leading to discontinuation, n (%)	1 (2.1%)	0
TEAE leading to death, n (%)	0	0
Most common TEAE: diarrhea, n (%)	27 (57.4%)	9 (19.6%)

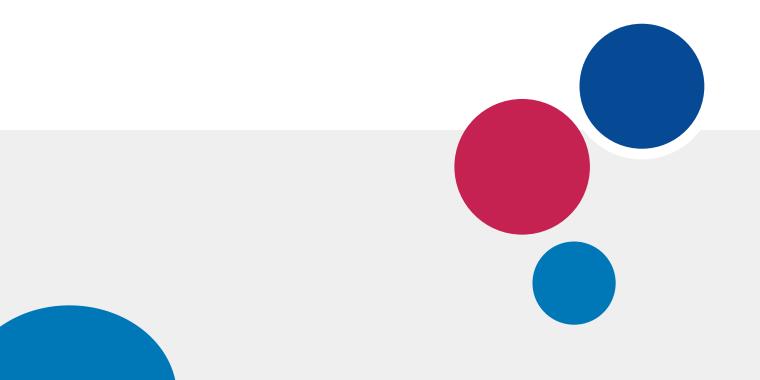
- Diarrhea was predominantly mild and transient with a median duration of 5.5 days; no severe events reported
- One patient had a TEAE of mild diarrhea that led to discontinuation
- No deaths reported

Key Takeaways

- MARCH is the largest Phase 3 trial conducted in children with PFIC that included PFIC types that had not previously been studied
- Primary and secondary endpoints were met
- Maralixibat demonstrated significant and rapid improvements in pruritus and serum bile acids, consistent across all PFIC types
- The magnitude of treatment effect observed with maralixibat is greater than previously documented
- Using the NAPPED threshold for BSEP deficiency associated with transplant-free survival, over half of the maralixibat-treated patients achieved a serum bile acid response across all PFIC types
- Significant improvements in bilirubin and weight Z-score were observed in the All-PFIC cohort, as well as a trend in height Z-score improvement
- Maralixibat was generally well tolerated, with no new safety signals observed

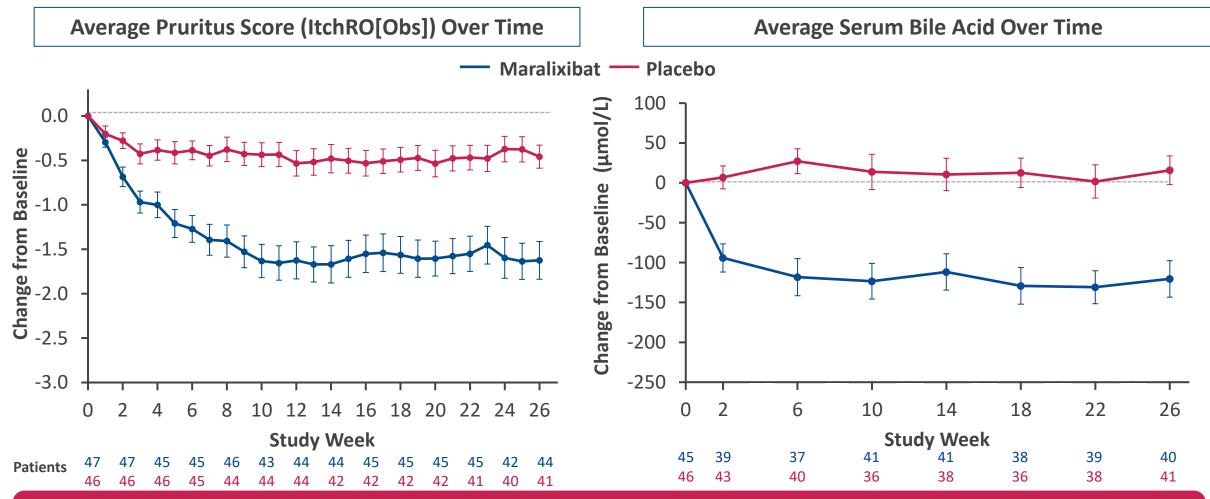
Acknowledgments

• The authors would like to thank the clinical trial participants, their families, and investigators for their participation in the MARCH-PFIC clinical study


Author Disclosures

- A Miethke is a consultant and has a sponsored research agreement for Mirum Pharmaceuticals, Inc.
- F Ordonez is a speaker for Alexion Pharmaceuticals and Valentech Pharma
- A Agul is a consultant for Mirum Pharmaceuticals, Inc, Albireo, and Sarepta Therapeutics
- E Sokal is the founder and chairman of Cellaion, an investigator for Mirum Pharmaceuticals, Inc., Albireo and Intercept, and an advisor for Albireo
- U Baumann is a consultant for Mirum Pharmaceuticals, Inc., Albireo, and Vivet Pharmaceuticals
- L D'Antiga is a consultant and advisor for Mirum Pharmaceuticals, Inc., Albireo, Selecta, Vivet Pharmaceuticals, Tome, Spark, Genespire, and Alexion
- N Kasi is a consultant for Mirum Pharmaceuticals, Inc.
- N Mittal is an investigator for Mirum Pharmaceuticals, Inc.
- S Horslen is a hepatic safety adjudication committee (HSAC) member at Albireo and has received a research grant from Mirum Pharmaceuticals, Inc.
- A Van Leerberghe, S Weber Ronn, T Nunes, A Lascau, L Longpre, W Garner, P Vig are employees and stakeholders at Mirum Pharmaceuticals, Inc.
- R P Gonzalez-Peralta has received a research grant from Mirum Pharmaceuticals, Inc., and is an advisor, teacher, and educator for Mirum Pharmaceuticals, Inc., and Albireo
- U Ekong is a steering committee member and member at Mirum Pharmaceuticals, Inc.
- A Moukarzel, G Porta, J Covarrubias Esquer, P Czubkowski, M Candusso, R Squires, D D'Agostino, N Laborde, C Arikan, C H Lin, S Gilmour, F K Chiou, W D Huber, V Hupertz, J Hartley, N Laverdure, and N Ovchinsky have nothing to disclose

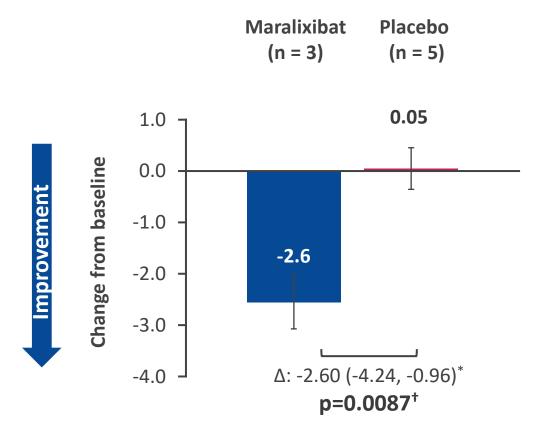
Back-Up

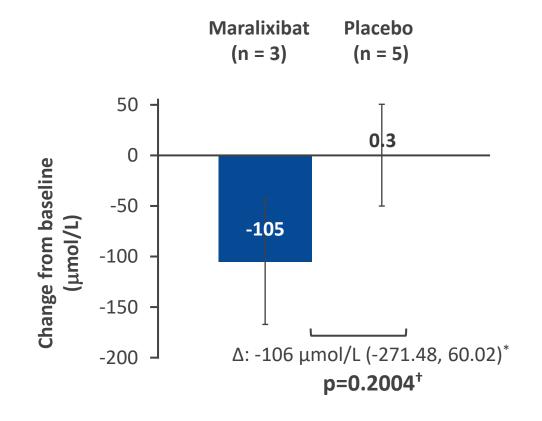


MARCH-PFIC: Patient Disposition

	BSEP De	BSEP Deficiency		All-PFIC		Full-Study	
Status or Category	Maralixibat (n = 14)	Placebo (n = 17)	Maralixibat (n = 33)	Placebo (n = 31)	Maralixibat (n = 47)	Placebo (n = 46)	
Screened for eligibility					125		
Screen failure					32		
Randomized	14	17	33	31	47	46	
Safety population	14	17	33	31	47	46	
Completed study treatment	13 (92.9%)	15 (88.2%)	32 (97.0%)	28 (90.3%)	44 (93.6%)	42 (91.3%)	
Reason for discontinuation							
Adverse event	0	0	0	0	1 (2.1%)	0	
Liver transplant	0	0	0	0	1 (2.1%)	0	
Withdrawal of consent	1 (7.1%)	1 (5.9%)	1 (3.0%)	2 (6.5%)	1 (2.1%)	3 (6.5%)	
Disease progression	0	1 (5.9%)	0	1 (3.2%)	0	1 (2.2%)	

The majority of randomized patients completed study treatment

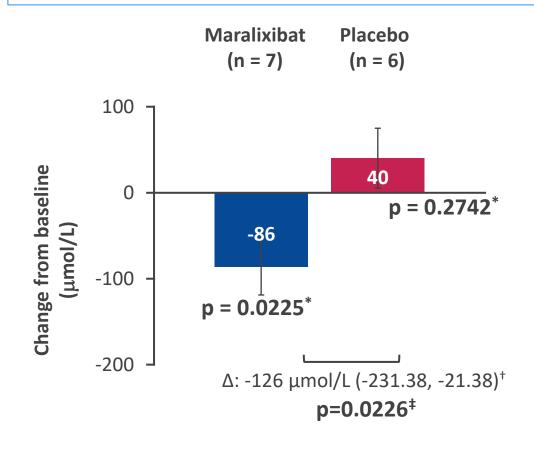

Change in Weekly ItchRO(Obs) Score and Serum Bile Acids in Full-Study Cohort (N=93)


Maralixibat resulted in statistically significant and clinically meaningful improvements in pruritus severity and serum bile acid levels across the full-study population

Change in Weekly ItchRO(Obs) Score and Serum Bile Acids in No-Variant-Found

Pruritus Score (ItchRO[Obs]) MMRM Analysis

Serum Bile Acids MMRM Analysis

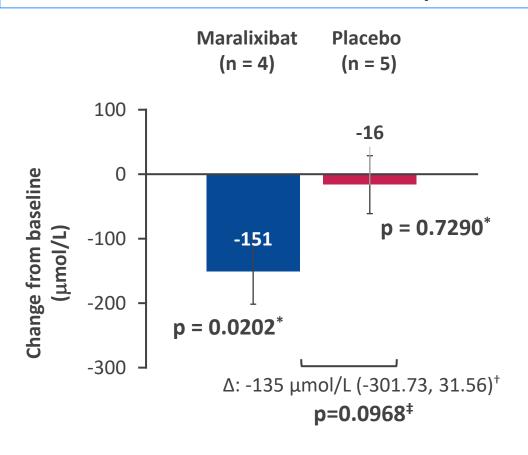

In patients with no-variant-found, maralixibat demonstrated improvements in pruritus and serum bile acids

Change in Weekly ItchRO(Obs) Score and Serum Bile Acids in FIC1

Pruritus Score (ItchRO[Obs]) MMRM Analysis

Maralixibat Placebo (n = 7)(n = 6)0.0 -0.3 Change from baseline p=0.6379* -0.5 mprovement -1.0 -1.4 -1.5 $p=0.0186^*$ -2.0 Δ : -1.14 (-2.79, 0.51)[†] p=0.1559[‡]


Serum Bile Acids MMRM Analysis


Change in Weekly ItchRO(Obs) Score and Serum Bile Acids in MDR3

Pruritus Score (ItchRO[Obs]) MMRM Analysis

Maralixibat Placebo (n = 4)(n = 5)0.0 Change from baseline -0.5 Improvement -1.2 -1.0 p=0.0014* -1.8 -1.5 p=0.0002* -2.0

Serum Bile Acids MMRM Analysis

